/***********************************************************************/ /* */ /* svm_classify.c */ /* */ /* Classification module of Support Vector Machine. */ /* */ /* Author: Thorsten Joachims */ /* Date: 02.07.02 */ /* */ /* Copyright (c) 2002 Thorsten Joachims - All rights reserved */ /* */ /* This software is available for non-commercial use only. It must */ /* not be modified and distributed without prior permission of the */ /* author. The author is not responsible for implications from the */ /* use of this software. */ /* */ /************************************************************************/ # include "svm_common.h" char docfile[200]; char modelfile[200]; char predictionsfile[200]; void read_input_parameters(int, char **, char *, char *, char *, long *, long *); void print_help(void); int main (int argc, char* argv[]) { DOC *doc; /* test example */ WORD *words; long max_docs,max_words_doc,lld; long totdoc=0,queryid,slackid; long correct=0,incorrect=0,no_accuracy=0; long res_a=0,res_b=0,res_c=0,res_d=0,wnum,pred_format; long j; double t1,runtime=0; double dist,doc_label,costfactor; char *line,*comment; FILE *predfl,*docfl; MODEL *model; read_input_parameters(argc,argv,docfile,modelfile,predictionsfile, &verbosity,&pred_format); nol_ll(docfile,&max_docs,&max_words_doc,&lld); /* scan size of input file */ max_words_doc+=2; lld+=2; line = (char *)my_malloc(sizeof(char)*lld); words = (WORD *)my_malloc(sizeof(WORD)*(max_words_doc+10)); model=read_model(modelfile); if(model->kernel_parm.kernel_type == 0) { /* linear kernel */ /* compute weight vector */ add_weight_vector_to_linear_model(model); } if(verbosity>=2) { printf("Classifying test examples.."); fflush(stdout); } if ((docfl = fopen (docfile, "r")) == NULL) { perror (docfile); exit (1); } if ((predfl = fopen (predictionsfile, "w")) == NULL) { perror (predictionsfile); exit (1); } while((!feof(docfl)) && fgets(line,(int)lld,docfl)) { if(line[0] == '#') continue; /* line contains comments */ parse_document(line,words,&doc_label,&queryid,&slackid,&costfactor,&wnum, max_words_doc,&comment); totdoc++; if(model->kernel_parm.kernel_type == 0) { /* linear kernel */ for(j=0;(words[j]).wnum != 0;j++) { /* Check if feature numbers */ if((words[j]).wnum>model->totwords) /* are not larger than in */ (words[j]).wnum=0; /* model. Remove feature if */ } /* necessary. */ doc = create_example(-1,0,0,0.0,create_svector(words,comment,1.0)); t1=get_runtime(); dist=classify_example_linear(model,doc); runtime+=(get_runtime()-t1); free_example(doc,1); } else { /* non-linear kernel */ doc = create_example(-1,0,0,0.0,create_svector(words,comment,1.0)); t1=get_runtime(); dist=classify_example(model,doc); runtime+=(get_runtime()-t1); free_example(doc,1); } if(dist>0) { if(pred_format==0) { /* old weired output format */ fprintf(predfl,"%.8g:+1 %.8g:-1\n",dist,-dist); } if(doc_label>0) correct++; else incorrect++; if(doc_label>0) res_a++; else res_b++; } else { if(pred_format==0) { /* old weired output format */ fprintf(predfl,"%.8g:-1 %.8g:+1\n",-dist,dist); } if(doc_label<0) correct++; else incorrect++; if(doc_label>0) res_c++; else res_d++; } if(pred_format==1) { /* output the value of decision function */ fprintf(predfl,"%.8g\n",dist); } if((int)(0.01+(doc_label*doc_label)) != 1) { no_accuracy=1; } /* test data is not binary labeled */ if(verbosity>=2) { if(totdoc % 100 == 0) { printf("%ld..",totdoc); fflush(stdout); } } } fclose(predfl); fclose(docfl); free(line); free(words); free_model(model,1); if(verbosity>=2) { printf("done\n"); /* Note by Gary Boone Date: 29 April 2000 */ /* o Timing is inaccurate. The timer has 0.01 second resolution. */ /* Because classification of a single vector takes less than */ /* 0.01 secs, the timer was underflowing. */ printf("Runtime (without IO) in cpu-seconds: %.2f\n", (float)(runtime/100.0)); } if((!no_accuracy) && (verbosity>=1)) { printf("Accuracy on test set: %.2f%% (%ld correct, %ld incorrect, %ld total)\n",(float)(correct)*100.0/totdoc,correct,incorrect,totdoc); printf("Precision/recall on test set: %.2f%%/%.2f%%\n",(float)(res_a)*100.0/(res_a+res_b),(float)(res_a)*100.0/(res_a+res_c)); } return(0); } void read_input_parameters(int argc, char **argv, char *docfile, char *modelfile, char *predictionsfile, long int *verbosity, long int *pred_format) { long i; /* set default */ strcpy (modelfile, "svm_model"); strcpy (predictionsfile, "svm_predictions"); (*verbosity)=2; (*pred_format)=1; for(i=1;(i=argc) { printf("\nNot enough input parameters!\n\n"); print_help(); exit(0); } strcpy (docfile, argv[i]); strcpy (modelfile, argv[i+1]); if((i+2) this help\n"); printf(" -v [0..3] -> verbosity level (default 2)\n"); printf(" -f [0,1] -> 0: old output format of V1.0\n"); printf(" -> 1: output the value of decision function (default)\n\n"); }