/************************************************************************/ /* */ /* svm_common.h */ /* */ /* Definitions and functions used in both svm_learn and svm_classify. */ /* */ /* Author: Thorsten Joachims */ /* Date: 02.07.02 */ /* */ /* Copyright (c) 2002 Thorsten Joachims - All rights reserved */ /* */ /* This software is available for non-commercial use only. It must */ /* not be modified and distributed without prior permission of the */ /* author. The author is not responsible for implications from the */ /* use of this software. */ /* */ /************************************************************************/ #ifndef SVM_COMMON #define SVM_COMMON # include # include # include # include # include # include # include # define VERSION "V6.02" # define VERSION_DATE "14.08.08" # define CFLOAT float /* the type of float to use for caching */ /* kernel evaluations. Using float saves */ /* us some memory, but you can use double, too */ # define FNUM long /* the type used for storing feature ids */ # define FVAL float /* the type used for storing feature values */ # define MAXFEATNUM 99999999 /* maximum feature number (must be in valid range of FNUM type and long int!) */ # define LINEAR 0 /* linear kernel type */ # define POLY 1 /* polynoial kernel type */ # define RBF 2 /* rbf kernel type */ # define SIGMOID 3 /* sigmoid kernel type */ # define CLASSIFICATION 1 /* train classification model */ # define REGRESSION 2 /* train regression model */ # define RANKING 3 /* train ranking model */ # define OPTIMIZATION 4 /* train on general set of constraints */ # define MAXSHRINK 50000 /* maximum number of shrinking rounds */ typedef struct word { FNUM wnum; /* word number */ FVAL weight; /* word weight */ } WORD; typedef struct svector { WORD *words; /* The features/values in the vector by increasing feature-number. Feature numbers that are skipped are interpreted as having value zero. */ double twonorm_sq; /* The squared euclidian length of the vector. Used to speed up the RBF kernel. */ char *userdefined; /* You can put additional information here. This can be useful, if you are implementing your own kernel that does not work with feature/values representations (for example a string kernel). By default, svm-light will put here the string after the # sign from each line of the input file. */ long kernel_id; /* Feature vectors with different kernel_id's are orthogonal (ie. the feature number do not match). This is used for computing component kernels for linear constraints which are a sum of several different weight vectors. (currently not implemented). */ struct svector *next; /* Let's you set up a list of SVECTOR's for linear constraints which are a sum of multiple feature vectors. List is terminated by NULL. */ double factor; /* Factor by which this feature vector is multiplied in the sum. */ } SVECTOR; typedef struct doc { long docnum; /* Document ID. This has to be the position of the document in the training set array. */ long queryid; /* for learning rankings, constraints are generated for documents with the same queryID. */ double costfactor; /* Scales the cost of misclassifying this document by this factor. The effect of this value is, that the upper bound on the alpha for this example is scaled by this factor. The factors are set by the feature 'cost:' in the training data. */ long slackid; /* Index of the slack variable corresponding to this constraint. All constraints with the same slackid share the same slack variable. This can only be used for svm_learn_optimization. */ SVECTOR *fvec; /* Feature vector of the example. The feature vector can actually be a list of feature vectors. For example, the list will have two elements, if this DOC is a preference constraint. The one vector that is supposed to be ranked higher, will have a factor of +1, the lower ranked one should have a factor of -1. */ } DOC; typedef struct learn_parm { long type; /* selects between regression and classification */ double svm_c; /* upper bound C on alphas */ double eps; /* regression epsilon (eps=1.0 for classification */ double svm_costratio; /* factor to multiply C for positive examples */ double transduction_posratio;/* fraction of unlabeled examples to be */ /* classified as positives */ long biased_hyperplane; /* if nonzero, use hyperplane w*x+b=0 otherwise w*x=0 */ long sharedslack; /* if nonzero, it will use the shared slack variable mode in svm_learn_optimization. It requires that the slackid is set for every training example */ long svm_maxqpsize; /* size q of working set */ long svm_newvarsinqp; /* new variables to enter the working set in each iteration */ long kernel_cache_size; /* size of kernel cache in megabytes */ double epsilon_crit; /* tolerable error for distances used in stopping criterion */ double epsilon_shrink; /* how much a multiplier should be above zero for shrinking */ long svm_iter_to_shrink; /* iterations h after which an example can be removed by shrinking */ long maxiter; /* number of iterations after which the optimizer terminates, if there was no progress in maxdiff */ long remove_inconsistent; /* exclude examples with alpha at C and retrain */ long skip_final_opt_check; /* do not check KT-Conditions at the end of optimization for examples removed by shrinking. WARNING: This might lead to sub-optimal solutions! */ long compute_loo; /* if nonzero, computes leave-one-out estimates */ double rho; /* parameter in xi/alpha-estimates and for pruning leave-one-out range [1..2] */ long xa_depth; /* parameter in xi/alpha-estimates upper bounding the number of SV the current alpha_t is distributed over */ char predfile[200]; /* file for predicitions on unlabeled examples in transduction */ char alphafile[200]; /* file to store optimal alphas in. use empty string if alphas should not be output */ /* you probably do not want to touch the following */ double epsilon_const; /* tolerable error on eq-constraint */ double epsilon_a; /* tolerable error on alphas at bounds */ double opt_precision; /* precision of solver, set to e.g. 1e-21 if you get convergence problems */ /* the following are only for internal use */ long svm_c_steps; /* do so many steps for finding optimal C */ double svm_c_factor; /* increase C by this factor every step */ double svm_costratio_unlab; double svm_unlabbound; double *svm_cost; /* individual upper bounds for each var */ long totwords; /* number of features */ } LEARN_PARM; typedef struct kernel_parm { long kernel_type; /* 0=linear, 1=poly, 2=rbf, 3=sigmoid, 4=custom */ long poly_degree; double rbf_gamma; double coef_lin; double coef_const; char custom[50]; /* for user supplied kernel */ } KERNEL_PARM; typedef struct model { long sv_num; long at_upper_bound; double b; DOC **supvec; double *alpha; long *index; /* index from docnum to position in model */ long totwords; /* number of features */ long totdoc; /* number of training documents */ KERNEL_PARM kernel_parm; /* kernel */ /* the following values are not written to file */ double loo_error,loo_recall,loo_precision; /* leave-one-out estimates */ double xa_error,xa_recall,xa_precision; /* xi/alpha estimates */ double *lin_weights; /* weights for linear case using folding */ double maxdiff; /* precision, up to which this model is accurate */ } MODEL; typedef struct quadratic_program { long opt_n; /* number of variables */ long opt_m; /* number of linear equality constraints */ double *opt_ce,*opt_ce0; /* linear equality constraints */ double *opt_g; /* hessian of objective */ double *opt_g0; /* linear part of objective */ double *opt_xinit; /* initial value for variables */ double *opt_low,*opt_up; /* box constraints */ } QP; typedef struct kernel_cache { long *index; /* cache some kernel evalutations */ CFLOAT *buffer; /* to improve speed */ long *invindex; long *active2totdoc; long *totdoc2active; long *lru; long *occu; long elems; long max_elems; long time; long activenum; long buffsize; } KERNEL_CACHE; typedef struct timing_profile { long time_kernel; long time_opti; long time_shrink; long time_update; long time_model; long time_check; long time_select; } TIMING; typedef struct shrink_state { long *active; long *inactive_since; long deactnum; double **a_history; /* for shrinking with non-linear kernel */ long maxhistory; double *last_a; /* for shrinking with linear kernel */ double *last_lin; /* for shrinking with linear kernel */ } SHRINK_STATE; double classify_example(MODEL *, DOC *); double classify_example_linear(MODEL *, DOC *); double kernel(KERNEL_PARM *, DOC *, DOC *); double single_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *); double custom_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *); SVECTOR *create_svector(WORD *, char *, double); SVECTOR *copy_svector(SVECTOR *); void free_svector(SVECTOR *); double sprod_ss(SVECTOR *, SVECTOR *); SVECTOR* sub_ss(SVECTOR *, SVECTOR *); SVECTOR* add_ss(SVECTOR *, SVECTOR *); SVECTOR* add_list_ss(SVECTOR *); void append_svector_list(SVECTOR *a, SVECTOR *b); SVECTOR* smult_s(SVECTOR *, double); int featvec_eq(SVECTOR *, SVECTOR *); double model_length_s(MODEL *, KERNEL_PARM *); void clear_vector_n(double *, long); void add_vector_ns(double *, SVECTOR *, double); double sprod_ns(double *, SVECTOR *); void add_weight_vector_to_linear_model(MODEL *); DOC *create_example(long, long, long, double, SVECTOR *); void free_example(DOC *, long); MODEL *read_model(char *); MODEL *copy_model(MODEL *); void free_model(MODEL *, int); void read_documents(char *, DOC ***, double **, long *, long *); int parse_document(char *, WORD *, double *, long *, long *, double *, long *, long, char **); double *read_alphas(char *,long); void nol_ll(char *, long *, long *, long *); long minl(long, long); long maxl(long, long); long get_runtime(void); int space_or_null(int); void *my_malloc(size_t); void copyright_notice(void); # ifdef _MSC_VER int isnan(double); # endif extern long verbosity; /* verbosity level (0-4) */ extern long kernel_cache_statistic; #endif