/***********************************************************************/ /* */ /* svm_learn_main.c */ /* */ /* Command line interface to the learning module of the */ /* Support Vector Machine. */ /* */ /* Author: Thorsten Joachims */ /* Date: 02.07.02 */ /* */ /* Copyright (c) 2000 Thorsten Joachims - All rights reserved */ /* */ /* This software is available for non-commercial use only. It must */ /* not be modified and distributed without prior permission of the */ /* author. The author is not responsible for implications from the */ /* use of this software. */ /* */ /***********************************************************************/ /* if svm-learn is used out of C++, define it as extern "C" */ #ifdef __cplusplus extern "C" { #endif # include "svm_common.h" # include "svm_learn.h" #ifdef __cplusplus } #endif char docfile[200]; /* file with training examples */ char modelfile[200]; /* file for resulting classifier */ char restartfile[200]; /* file with initial alphas */ void read_input_parameters(int, char **, char *, char *, char *, long *, LEARN_PARM *, KERNEL_PARM *); void wait_any_key(); void print_help(); int main (int argc, char* argv[]) { DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL *model=(MODEL *)my_malloc(sizeof(MODEL)); read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity, &learn_parm,&kernel_parm); read_documents(docfile,&docs,&target,&totwords,&totdoc); if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ /* deep_copy_of_model=copy_model(model); */ write_model(modelfile,model); free(alpha_in); free_model(model,0); for(i=0;ipredfile, "trans_predictions"); strcpy (learn_parm->alphafile, ""); strcpy (restartfile, ""); (*verbosity)=1; learn_parm->biased_hyperplane=1; learn_parm->sharedslack=0; learn_parm->remove_inconsistent=0; learn_parm->skip_final_opt_check=0; learn_parm->svm_maxqpsize=10; learn_parm->svm_newvarsinqp=0; learn_parm->svm_iter_to_shrink=-9999; learn_parm->maxiter=100000; learn_parm->kernel_cache_size=40; learn_parm->svm_c=0.0; learn_parm->eps=0.1; learn_parm->transduction_posratio=-1.0; learn_parm->svm_costratio=1.0; learn_parm->svm_costratio_unlab=1.0; learn_parm->svm_unlabbound=1E-5; learn_parm->epsilon_crit=0.001; learn_parm->epsilon_a=1E-15; learn_parm->compute_loo=0; learn_parm->rho=1.0; learn_parm->xa_depth=0; kernel_parm->kernel_type=0; kernel_parm->poly_degree=3; kernel_parm->rbf_gamma=1.0; kernel_parm->coef_lin=1; kernel_parm->coef_const=1; strcpy(kernel_parm->custom,"empty"); strcpy(type,"c"); for(i=1;(ibiased_hyperplane=atol(argv[i]); break; case 'i': i++; learn_parm->remove_inconsistent=atol(argv[i]); break; case 'f': i++; learn_parm->skip_final_opt_check=!atol(argv[i]); break; case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break; case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break; case '#': i++; learn_parm->maxiter=atol(argv[i]); break; case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break; case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break; case 'c': i++; learn_parm->svm_c=atof(argv[i]); break; case 'w': i++; learn_parm->eps=atof(argv[i]); break; case 'p': i++; learn_parm->transduction_posratio=atof(argv[i]); break; case 'j': i++; learn_parm->svm_costratio=atof(argv[i]); break; case 'e': i++; learn_parm->epsilon_crit=atof(argv[i]); break; case 'o': i++; learn_parm->rho=atof(argv[i]); break; case 'k': i++; learn_parm->xa_depth=atol(argv[i]); break; case 'x': i++; learn_parm->compute_loo=atol(argv[i]); break; case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break; case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break; case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break; case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break; case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break; case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break; case 'l': i++; strcpy(learn_parm->predfile,argv[i]); break; case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break; case 'y': i++; strcpy(restartfile,argv[i]); break; default: printf("\nUnrecognized option %s!\n\n",argv[i]); print_help(); exit(0); } } if(i>=argc) { printf("\nNot enough input parameters!\n\n"); wait_any_key(); print_help(); exit(0); } strcpy (docfile, argv[i]); if((i+1)svm_iter_to_shrink == -9999) { if(kernel_parm->kernel_type == LINEAR) learn_parm->svm_iter_to_shrink=2; else learn_parm->svm_iter_to_shrink=100; } if(strcmp(type,"c")==0) { learn_parm->type=CLASSIFICATION; } else if(strcmp(type,"r")==0) { learn_parm->type=REGRESSION; } else if(strcmp(type,"p")==0) { learn_parm->type=RANKING; } else if(strcmp(type,"o")==0) { learn_parm->type=OPTIMIZATION; } else if(strcmp(type,"s")==0) { learn_parm->type=OPTIMIZATION; learn_parm->sharedslack=1; } else { printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type); wait_any_key(); print_help(); exit(0); } if((learn_parm->skip_final_opt_check) && (kernel_parm->kernel_type == LINEAR)) { printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n"); learn_parm->skip_final_opt_check=0; } if((learn_parm->skip_final_opt_check) && (learn_parm->remove_inconsistent)) { printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n"); wait_any_key(); print_help(); exit(0); } if((learn_parm->svm_maxqpsize<2)) { printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); wait_any_key(); print_help(); exit(0); } if((learn_parm->svm_maxqpsizesvm_newvarsinqp)) { printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); wait_any_key(); print_help(); exit(0); } if(learn_parm->svm_iter_to_shrink<1) { printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink); wait_any_key(); print_help(); exit(0); } if(learn_parm->svm_c<0) { printf("\nThe C parameter must be greater than zero!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->transduction_posratio>1) { printf("\nThe fraction of unlabeled examples to classify as positives must\n"); printf("be less than 1.0 !!!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->svm_costratio<=0) { printf("\nThe COSTRATIO parameter must be greater than zero!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->epsilon_crit<=0) { printf("\nThe epsilon parameter must be greater than zero!\n\n"); wait_any_key(); print_help(); exit(0); } if(learn_parm->rho<0) { printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n"); printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n"); printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n"); wait_any_key(); print_help(); exit(0); } if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) { printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n"); printf("for switching to the conventional xa/estimates described in T. Joachims,\n"); printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n"); wait_any_key(); print_help(); exit(0); } } void wait_any_key() { printf("\n(more)\n"); (void)getc(stdin); } void print_help() { printf("\nSVM-light %s: Support Vector Machine, learning module %s\n",VERSION,VERSION_DATE); copyright_notice(); printf(" usage: svm_learn [options] example_file model_file\n\n"); printf("Arguments:\n"); printf(" example_file-> file with training data\n"); printf(" model_file -> file to store learned decision rule in\n"); printf("General options:\n"); printf(" -? -> this help\n"); printf(" -v [0..3] -> verbosity level (default 1)\n"); printf("Learning options:\n"); printf(" -z {c,r,p} -> select between classification (c), regression (r),\n"); printf(" and preference ranking (p) (default classification)\n"); printf(" -c float -> C: trade-off between training error\n"); printf(" and margin (default [avg. x*x]^-1)\n"); printf(" -w [0..] -> epsilon width of tube for regression\n"); printf(" (default 0.1)\n"); printf(" -j float -> Cost: cost-factor, by which training errors on\n"); printf(" positive examples outweight errors on negative\n"); printf(" examples (default 1) (see [4])\n"); printf(" -b [0,1] -> use biased hyperplane (i.e. x*w+b>0) instead\n"); printf(" of unbiased hyperplane (i.e. x*w>0) (default 1)\n"); printf(" -i [0,1] -> remove inconsistent training examples\n"); printf(" and retrain (default 0)\n"); printf("Performance estimation options:\n"); printf(" -x [0,1] -> compute leave-one-out estimates (default 0)\n"); printf(" (see [5])\n"); printf(" -o ]0..2] -> value of rho for XiAlpha-estimator and for pruning\n"); printf(" leave-one-out computation (default 1.0) (see [2])\n"); printf(" -k [0..100] -> search depth for extended XiAlpha-estimator \n"); printf(" (default 0)\n"); printf("Transduction options (see [3]):\n"); printf(" -p [0..1] -> fraction of unlabeled examples to be classified\n"); printf(" into the positive class (default is the ratio of\n"); printf(" positive and negative examples in the training data)\n"); printf("Kernel options:\n"); printf(" -t int -> type of kernel function:\n"); printf(" 0: linear (default)\n"); printf(" 1: polynomial (s a*b+c)^d\n"); printf(" 2: radial basis function exp(-gamma ||a-b||^2)\n"); printf(" 3: sigmoid tanh(s a*b + c)\n"); printf(" 4: user defined kernel from kernel.h\n"); printf(" -d int -> parameter d in polynomial kernel\n"); printf(" -g float -> parameter gamma in rbf kernel\n"); printf(" -s float -> parameter s in sigmoid/poly kernel\n"); printf(" -r float -> parameter c in sigmoid/poly kernel\n"); printf(" -u string -> parameter of user defined kernel\n"); printf("Optimization options (see [1]):\n"); printf(" -q [2..] -> maximum size of QP-subproblems (default 10)\n"); printf(" -n [2..q] -> number of new variables entering the working set\n"); printf(" in each iteration (default n = q). Set n size of cache for kernel evaluations in MB (default 40)\n"); printf(" The larger the faster...\n"); printf(" -e float -> eps: Allow that error for termination criterion\n"); printf(" [y [w*x+b] - 1] >= eps (default 0.001)\n"); printf(" -y [0,1] -> restart the optimization from alpha values in file\n"); printf(" specified by -a option. (default 0)\n"); printf(" -h [5..] -> number of iterations a variable needs to be\n"); printf(" optimal before considered for shrinking (default 100)\n"); printf(" -f [0,1] -> do final optimality check for variables removed\n"); printf(" by shrinking. Although this test is usually \n"); printf(" positive, there is no guarantee that the optimum\n"); printf(" was found if the test is omitted. (default 1)\n"); printf(" -y string -> if option is given, reads alphas from file with given\n"); printf(" and uses them as starting point. (default 'disabled')\n"); printf(" -# int -> terminate optimization, if no progress after this\n"); printf(" number of iterations. (default 100000)\n"); printf("Output options:\n"); printf(" -l string -> file to write predicted labels of unlabeled\n"); printf(" examples into after transductive learning\n"); printf(" -a string -> write all alphas to this file after learning\n"); printf(" (in the same order as in the training set)\n"); wait_any_key(); printf("\nMore details in:\n"); printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n"); printf(" Kernel Methods - Support Vector Learning, B. Schölkopf and C. Burges and\n"); printf(" A. Smola (ed.), MIT Press, 1999.\n"); printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n"); printf(" Efficiently. International Conference on Machine Learning (ICML), 2000.\n"); printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n"); printf(" Vector Machines. International Conference on Machine Learning (ICML),\n"); printf(" 1999.\n"); printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n"); printf(" with a knowledge-based approach - A case study in intensive care \n"); printf(" monitoring. International Conference on Machine Learning (ICML), 1999.\n"); printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n"); printf(" Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n"); printf(" 2002.\n\n"); }